Current File : //usr/share/man/man3mlib/mlib_MatrixTranspose_U8.3mlib
'\" te
.\" Copyright (c) 2007, Sun Microsystems, Inc.  All Rights Reserved 
.TH mlib_MatrixTranspose_U8 3MLIB "2 Mar 2007" "SunOS 5.11" "mediaLib Library Functions"
.SH NAME
mlib_MatrixTranspose_U8, mlib_MatrixTranspose_U8C, mlib_MatrixTranspose_S8, mlib_MatrixTranspose_S8C, mlib_MatrixTranspose_S16, mlib_MatrixTranspose_S16C, mlib_MatrixTranspose_S32, mlib_MatrixTranspose_S32C \- matrix transpose, in place
.SH SYNOPSIS
.LP
.nf
cc [ \fIflag\fR... ] \fIfile\fR... \fB-lmlib\fR [ \fIlibrary\fR... ]
#include <mlib.h>

\fBmlib_status\fR \fBmlib_MatrixTranspose_U8\fR(\fBmlib_u8 *\fR\fIxz\fR, \fBmlib_s32\fR \fImn\fR);
.fi

.LP
.nf
\fBmlib_status\fR \fBmlib_MatrixTranspose_U8C\fR(\fBmlib_u8 *\fR\fIxz\fR, \fBmlib_s32\fR \fImn\fR);
.fi

.LP
.nf
\fBmlib_status\fR \fBmlib_MatrixTranspose_S8\fR(\fBmlib_s8 *\fR\fIxz\fR, \fBmlib_s32\fR \fImn\fR);
.fi

.LP
.nf
\fBmlib_status\fR \fBmlib_MatrixTranspose_S8C\fR(\fBmlib_s8 *\fR\fIxz\fR, \fBmlib_s32\fR \fImn\fR);
.fi

.LP
.nf
\fBmlib_status\fR \fBmlib_MatrixTranspose_S16\fR(\fBmlib_s16 *\fR\fIxz\fR, \fBmlib_s32\fR \fImn\fR);
.fi

.LP
.nf
\fBmlib_status\fR \fBmlib_MatrixTranspose_S16C\fR(\fBmlib_s16 *\fR\fIxz\fR, \fBmlib_s32\fR \fImn\fR);
.fi

.LP
.nf
\fBmlib_status\fR \fBmlib_MatrixTranspose_S32\fR(\fBmlib_s32 *\fR\fIxz\fR, \fBmlib_s32\fR \fImn\fR);
.fi

.LP
.nf
\fBmlib_status\fR \fBmlib_MatrixTranspose_S32C\fR(\fBmlib_s32 *\fR\fIxz\fR, \fBmlib_s32\fR \fImn\fR);
.fi

.SH DESCRIPTION
.sp
.LP
Each of these functions performs an in-place transpose of a square matrix.
.sp
.LP
For real data, the following pseudo code applies:
.sp
.in +2
.nf
for (i = 1; i < mn; i++) {
    for (j = 0; j < i; i++) {
        tmp          = xz[i*mn + j];
        xz[i*mn + j] = xz[j*mn + i];
        xz[j*mn + i] = tmp;
    }
}
.fi
.in -2

.sp
.LP
For complex data, the following pseudo code applies:
.sp
.in +2
.nf
for (i = 1; i < mn; i++) {
    for (j = 0; j < i; i++) {
        tmp0                 = xz[2*(i*mn + j)];
        tmp1                 = xz[2*(i*mn + j) + 1];
        xz[2*(i*mn + j)]     = xz[2*(j*mn + i)];
        xz[2*(i*mn + j) + 1] = xz[2*(j*mn + i) + 1];
        xz[2*(j*mn + i)]     = tmp0;
        xz[2*(j*mn + i) + 1] = tmp1;
    }
}
.fi
.in -2

.SH PARAMETERS
.sp
.LP
Each of the functions takes the following arguments:
.sp
.ne 2
.mk
.na
\fB\fIxz\fR\fR
.ad
.RS 6n
.rt  
Pointer to the source and destination matrix.
.RE

.sp
.ne 2
.mk
.na
\fB\fImn\fR\fR
.ad
.RS 6n
.rt  
Number of rows and columns in the matrix.
.RE

.SH RETURN VALUES
.sp
.LP
Each of the functions returns \fBMLIB_SUCCESS\fR if successful. Otherwise it returns \fBMLIB_FAILURE\fR.
.SH ATTRIBUTES
.sp
.LP
See \fBattributes\fR(5) for descriptions of the following attributes:
.sp

.sp
.TS
tab() box;
cw(2.75i) |cw(2.75i) 
lw(2.75i) |lw(2.75i) 
.
ATTRIBUTE TYPEATTRIBUTE VALUE
_
Interface StabilityCommitted
_
MT-LevelMT-Safe
.TE

.SH SEE ALSO
.sp
.LP
mlib_MatrixTranspose_U8(3MLIB), \fBattributes\fR(5)